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Abstract
Development of a quantum cluster embedding scheme based on non-orthogonal
localized orbitals requires an efficient numerical method for calculating the
electron density of the reference periodic crystal. We demonstrate that an
existing method due to Löwdin based on the inverse overlap matrix expansion
can only be used when the orbitals are highly localized (e.g. ionic systems).
In other cases including covalent crystals or those with an intermediate type
of chemical bonding this method may be either numerically inefficient or fail
altogether. Instead, we suggest an exact and numerically efficient method which
can be used for orbitals of practically arbitrary localization. Theory is illustrated
by numerical calculations on a model system.

1. Introduction

Understanding of the electronic structure of extended systems with a local perturbation,
e.g. point defects in the crystal bulk [1] or adsorption of molecules at crystal surfaces [2],
is of fundamental importance in solid state physics and chemistry. One way of calculating the
electronic structure of the above mentioned systems is based on the usage of so-called cluster
methods in which a finite fragment of an extended system (a quantum cluster) is considered
in detail while the rest of the system is treated at a lower level of theory [3–13]. The main
problem of any existing cluster based scheme is in choosing an appropriate termination of
the cluster. Usually, the quantum cluster is surrounded by point charges [5], pseudoatoms
(see, e.g. [13]), link atoms [8, 6, 9] or pseudopotentials [14, 15, 13]. In more sophisticated
methods the environment region is described by an electronic wavefunction which could
be either frozen [10, 16] or recalculated self-consistently with that of the quantum cluster
region [17, 6, 18–20] (a general theory of cluster embedding which comprises most of the
existing cluster schemes is considered in [3, 4]).
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A rather general cluster method based on overlapping (not orthogonal) localized molecular
orbitals is currently being developed in our laboratory. Our method, which is similar in spirit
to some one-electron methods [16, 20, 19], is based on a construction of strongly localized
orbitals which are designed to represent the true electronic density of the entire system via
a combination of elementary densities associated in simple cases with atoms, ions and/or
bonds; these are called regions [21]. Our intention is to create a technique which can be valid
for systems of different chemical character, ranging from purely ionic to strongly covalent
(excluding metals).

In addition to this, any electronic structure method requires the calculation of the electron
density of the entire system from the corresponding molecular orbitals at every electronic
iteration. This calculation is straightforward if the molecular orbitals are orthogonal. However,
if these are not, then the calculation is not at all trivial as far as extended systems, such as
crystals, are concerned. Therefore, a general and numerically efficient method of calculating
electron density from a given set of strongly localized non-orthogonal orbitals localized within
corresponding regions is also required.

The issue of calculating orbitals localized in appropriate regions for extreme cases of
strongly ionic and covalent crystals has been considered separately [21]. It is the main objective
of this paper to discuss methods of calculating the electron density of periodic systems described
via localized non-orthogonal molecular orbitals.

It should be mentioned that literature on this topic is quite scarce, which is probably
explained by the lack of interest (until recently) in non-orthogonal (non-canonical) molecular
orbitals: in most techniques used in the solid state community, orthogonal Bloch functions are
employed in practical calculations. There are only a few exceptions (see e.g. [22]). If a set
of non-orthogonal molecular orbitals is used, the expression for the electron density is much
more complicated since it contains an inverse of an infinite overlap matrix constructed out of
the non-orthogonal orbitals of the whole system under consideration [23].

As far as we are aware, there have only been two methods developed which enable
calculation of the electron density of a periodic system from non-orthogonal orbitals. Both
methods are based on a series expansion of the density: while the first method [22] relies on
the so-called cluster expansion of the density, the second one [24–26] is based on the power
expansion of the inverse overlap matrix. In this paper we analyse only the second of the
methods in detail since the first one is very complicated and much more difficult to implement.
In section 2 we re-examine the second method from the point of view of the correct density
normalization. Then, we suggest an alternative technique which does not require any series
expansion. The two methods are compared in section 3 using a very simple model system.
The paper is finished with a short discussion and conclusions in section 4.

2. Electron density of a periodic system

Let capital letters A, B etc be used to indicate regions, while the corresponding small letters
a, b etc indicate localized orbitals associated with them, i.e. a ∈ A, b ∈ B etc; see figure 1.
Each region may have several localized orbitals. We assume that the orbitals are real. They
are expanded over atomic orbitals centred only on atoms which are inside the region border.
Two localized orbitals belonging to different regions are not orthogonal either because they
have common atomic orbitals or, if they do not, then due to their exponential tails.

Each region A is prescribed with an even number NA of electrons. Thus, there are a
finite number n A = NA/2 of doubly occupied orbitals associated with the given region A.
The localized orbitals ϕAa(r) belonging to the same region are assumed to be orthonormal;
orbitals belonging to different regions are not orthogonal, i.e. the corresponding overlap
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Figure 1. A schematic diagram of a division of a crystal into overlapping regions. Each atom
(shown by small black circles) provides a set of atomic orbitals centred on it. Only two neighbouring
regions A (solid line) and B (dashed line) are shown, which physically represent bonds between
atoms 1–2 and 2–3, respectively. All atomic orbitals centred on atoms within each region contribute
to the localized orbitals associated with this region. It is thus seen that different regions may have
common atomic orbitals if their borders overlap. In particular, atomic orbitals of atoms 1, 2 and 3
belong to both regions indicated.

integral SAa,Bb = 〈ϕAa |ϕBb〉 is assumed to be not zero in general. Note that there might be
several regions within every primitive unit cell in the crystal. Localized orbitals belonging
to physically equivalent regions in different unit cells are obtained by appropriate lattice
translations, i.e. ϕBa(r) = ϕAa(r − L), where physically equivalent regions B and A are
separated by the translation vector L.

In general, the spinless electron density takes on the following general form:

ρ̃(r, r′) = 2
∑
Aa

∑
Bb

ϕAa(r)(S−1)Aa,BbϕBb(r′) (1)

which contains the inverse of the overlap matrix, S = ‖SAa,Bb‖. The overlap matrix can also
be written as a set of finite matrix blocks SAB = ‖SAa,Bb‖ associated with every pair of regions.
Note that for an infinite crystal the matrix S has an infinite size. As usual, the factor of two is
due to the fact that each orbital is occupied by two electrons with opposite spins.

In both summations above, localized orbitals from all unit cells are taken into account.
To stress the periodic symmetry of the crystal, it is useful to rewrite the density in a slightly
different form:

ρ̃(r, r′) =
∑

L

ρ(r − L, r′ − L) (2)

where we introduced a periodic image of the density (‘density image’ for short):

ρ(r, r′) = 2
∑
Aa

′ ∑
Bb

ϕAa(r)(S−1)Aa,BbϕBb(r′) (3)

where in the first sum (indicated by a prime) the summation is run only over localized orbitals
within the single primitive cell associated with the zero lattice translation; the other summation
runs over all orbitals in the whole infinite system. Note that the density image is normalized
on the number of electrons in the unit cell only:∫

ρ(r, r) dr =
∑

A

′
NA. (4)
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2.1. Method based on the expansion of the inverse of the overlap matrix

Following the original prescription by Löwdin [24],we present the overlap matrix as S = 1+∆,
where the matrix ∆ = ‖∆Aa,Bb‖ is the same as the original overlap matrix except for its
elements when A = B which are all equal to zero, ∆Aa,Aa′ = 0. Then, one can formally write
a matrix expansion:

S−1 = (1 + ∆)−1 = 1 − ∆ + ∆2 − ∆3 + · · · . (5)

One can show (using diagonalization of the matrix S or its expansion over the eigenstates) that
the expansion (5) can only be used if absolute values of all eigenvalues of the matrix ∆ are
less than unity.

Using expansion of equation (5), one obtains the following expansion for the image
density (3):

ρ(r, r′) =
∞∑

n=0

ρ(n)(r, r′) =
∞∑

n=0

(−1)n

[
2
∑
Aa

′ ∑
Bb

ϕAa(r)(∆n)Aa,BbϕBb(r′)

]
. (6)

Note that a general nth-order term (for n � 2) contains an additional n − 1 summations over
all regions due to matrix multiplications in ∆n .

In principle, formulae (2) and (6) allow an approximate calculation of the electron density
by terminating the infinite expansion. Care should be taken, however, in doing so to preserve
the correct normalization of the density.

The zero-order contribution

ρ(0)(r, r′) = 2
∑
Aa

′
ϕAa(r)ϕAa(r′) (7)

does not contain overlap integrals at all and is normalized to the total number of electrons in
the unit cell. Therefore, if any higher order terms are kept in the terminated expansion (6),
they should be integrated (normalized) to zero. Consider this point in more detail.

The first-order contribution to the image density

ρ(1)(r, r′) = −2
∑
Aa

′ ∑
Bb

ϕAa(r)�Aa,BbϕBb(r′) (8)

contains different regions A �= B and thus its contribution to the charge (or normalization)
becomes

�N (1) =
∫

ρ(1)(r, r) dr = −2
∑
Aa

′ ∑
Bb

�Bb,Aa�Aa,Bb = −2
∑

A

′
TrA(∆2) (9)

where the trace TrA(· · ·) here is calculated with respect to the localized orbitals belonging
to region A only. We see that the first-order term has a finite non-zero charge (in fact, it is
negative).

Any higher order contributions in equation (6) for n � 2 contain additional summations
over regions, so equal regions A = B in the double summation there are also possible.
Therefore, every such contribution, ρ(n)(r, r′), will be split into two terms: a diagonal term

ρ
(n)

d (r, r′) = 2(−1)n
∑
Aa,a′

′
ϕAa(r)(∆n)Aa,Aa′ϕAa′(r′) (10)

in which A = B; and a non-diagonal term

ρ
(n)

nd (r, r′) = 2(−1)n
∑
Aa

′ ∑
B( �=A),b

ϕAa(r)(∆n)Aa,BbϕBb(r′) (11)
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associated with A �= B in equation (6). Correspondingly, we obtain the following contributions
to the charge:

�N (n)

d = 2(−1)n
∑
Aaa′

′
(∆n)Aa,Aa′ SAa,Aa′ = 2(−1)n

∑
A

′
TrA(∆n) (12)

�N (n)

nd = 2(−1)n
∑
Aa

′ ∑
B( �=A),b

(∆n)Aa,Bb�Bb,Aa = 2(−1)n
∑

A

′
TrA(∆n+1). (13)

Thus, we see that for any order n � 2 we have �N (n)

nd ≡ −�N (n+1)

d . This means that the
non-diagonal contribution to the density (11) is compensated exactly by the diagonal one (10)
of the next order. For instance, the non-zero charge (9) is to be exactly eliminated by a charge
due to the diagonal second-order density; in turn, a non-zero charge due to non-diagonal
second-order density is compensated exactly by the diagonal third-order density contribution
and so on.

This result is very useful since it allows one to balance properly a terminated expansion
for the image density so that it would correspond (in any order!) to the correct total charge. To
do this, the final expression for the density of any nth order should also include the diagonal
(A = B) term from the contribution of the next order. We stress that this fact was ignored in the
previous applications of this method [25, 26]. We obtain that the correct nth-order expansion
for the image density in the notation of equations (10), (11) should have the form

ρ(r, r′) 	 ρ[n](r, r′) ≡
n∑

i=0

[
ρ

(i)
d (r, r′) + ρ

(i)
nd (r, r′)

]
+ ρ

(n+1)

d (r, r′). (14)

Employing this termination of the series, the normalization condition (4) is satisfied exactly.
Thus, in order to calculate the density up to the nth order, one has to calculate the

matrix elements (∆k)Aa,Bb of the matrix � for all powers k = 1, . . . , n; in addition, one
also needs diagonal A = B elements of ∆n+1. Then, the contributions from all density images
corresponding to all lattice translations, equation (2), are to be added together to get the final
electron density.

The method described here relies on the convergence of the density expansion (6). Better
localization of the orbitals ϕAa(r), faster convergence and thus a smaller number of terms
are needed. We shall demonstrate in section 3 that in some cases of not very well localized
orbitals one has to consider the density expansion up to a very high order, which makes the
calculation extremely time-consuming. Moreover, if the orbital localization becomes worse
than a certain criterion (to be discussed in section 3), then this method fails altogether, as the
expansion diverges. A general and an extremely efficient technique which is not based on a
perturbative expansion of any kind and can be used for localized orbitals of practically any
degree of localization is suggested in the next subsection.

2.2. Method based on the Fourier transform of localized orbitals

In equation (1) for the electron density, regions A and B are to be chosen from all unit cells
of the infinite periodic system. It is convenient in this section to identify explicitly the lattice
vector for every localized orbital in its index. Therefore, in the following we shall use letters A,
B etc only for regions within the zeroth unit cell; in particular, the orbital ϕAa(r) is assumed to
be from the zeroth cell. Localized orbitals from other cells are characterized by the combined
index (LAa); i.e. ϕLAa(r) = ϕAa(r − L) is the ath localized orbital from region A in the unit
cell separated from the zeroth cell by the lattice translation L.

Correspondingly, equation (1) is rewritten in the following way:

ρ̃(r, r′) = 2
∑
LAa

∑
MBb

ϕAa(r − L)(S−1)LAa,MBbϕBb(r′ − M) (15)
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where L and M are two lattice translations. A further transformation is possible here since
the overlap integral SLAa,MBb depends in fact only on the difference M − L of the lattice
translations. This allows expansion of the overlap integral into the Fourier integral

SLAa,MBb = 1

N

∑
k

SAa,Bb(k)e−ik(L−M) (16)

where the summation is performed over N points k in the first Brillouin zone (BZ) and

SAa,Bb(k) =
∑

L

S0Aa,LBbeikL (17)

is the corresponding Fourier image. The direct lattice summation in the last formula is easily
terminated due to (usually) exponential decay of the overlap integrals of localized orbitals.

Using the Fourier representation of the overlap matrix, one can exactly calculate its inverse
as follows:

(S−1)LAa,MBb = 1

N

∑
k

[S−1(k)]Aa,Bbe−ik(L−M). (18)

Note that the matrix S(k) = ‖SAa,Bb(k)‖ has the finite size of the number of localized orbitals
per unit cell. Therefore, in order to calculate the inverse of the overlap matrix in direct
space, one has to perform the calculation of S−1(k) for finite size matrices for every k point
necessary to sample the BZ. Substituting equation (18) into (15), we arrive at the following
final expression for the electron density:

ρ̃(r, r′) = 2

N

∑
k

{∑
Aa

∑
Bb

ϕAa(r, k)
[
S−1(k)

]
Aa,Bb

ϕ∗
Bb(r

′, k)

}
(19)

where

ϕAa(r, k) =
∑

L

ϕAa(r − L)e−ikL (20)

is the Fourier expansion of the localized orbital. Due to the exponential decay of the localized
orbitals, the summation over lattice vectors L in the last expression is in fact finite.

The formula obtained for the density is exact. In particular, it contains the periodicity
of the lattice built in. It is also extremely convenient for numerical implementation. Indeed,
what is needed is the calculation of the Fourier images, according to equation (20), of every
localized orbital in the primitive unit cell for every k point. The summations in the curly
brackets in equation (19) are finite (limited to the orbitals within the zeroth cell only) and
are thus easily performed. The extent to which the orbitals ϕAa(r) are localized is reflected
by the number of cells to be taken into account while performing the lattice summations in
equations (17) and (20). Even for orbitals which are not very well localized, the amount of
work needed to perform these lattice summations is not comparable with the cost of the first
method (section 2.1) which requires including more terms in the perturbation expansion if the
localization is not good enough.

3. Results

Atomic units are used throughout this section. The application of the two methods considered
in the previous sections is illustrated here on a simple cubic lattice model containing a single
region in every unit cell. The lattice constant a will be assumed to be equal to 1 au for
simplicity. Each region is represented by a single localized orbital in the form of a normalized
s type Gaussian:

ϕLAa(r) → ϕL(r) ≡ ϕ(r − L), ϕ(r) =
(

2α

π

)3/4

e−αr2
. (21)
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By choosing various values for the exponent α, one can vary the degree of localization of
the orbitals. Indeed, the size of the spatial extent of the orbital can be measured in terms of

reff =
√

ln 10
α

	 1.52α−1/2, which corresponds to e−αr2
eff = 0.1. We found this approach more

convenient in our particular case than the application of the existing localization criterion (see,
e.g., [27, 28]).

For this model system it is possible to do some preliminary analytical estimations of the
convergence of the series (5). We know from section 2.1 that the series will converge if all
eigenvalues �λ of the matrix ∆ = S − 1 are between −1 and 1. It is easy to see that the
eigenvalues are in fact given by the Fourier transforms �k of the matrix ∆ which is introduced
much in the same way as S(k) in equation (17). Indeed, because �L,M = �0,M−L, one can
write ∑

M

�L,MeikM =
(∑

M

�0,M−Leik(M−L)

)
eikL = �keikL. (22)

This is nothing but the eigenproblem for the matrix ∆ with �k being its eigenvalues (numbered
by vectors k from the BZ) and ‖eikL‖ its eigenvectors. Therefore, the convergence criterion
for the series (5) reduces to the inequalities |�k| < 1 which should be valid for any k. Taking
into account the overlap only between nearest neighbours, we obtain

|�k| = |2δ(cos(kx a) + cos(kya) + cos(kza))| � 6δ < 1

with the overlap between neighbouringorbitals being δ = e−αa2/2. This results in the following
criterion for the convergence of the Löwdin expansion (for a = 1 au):

α � α∗
1 = 2 ln(6) ≈ 3.6. (23)

Similar analysis which takes into account the next nearest neighbours gives a very similar
estimate of α∗

1 ≈ 4.05. These estimates correspond to the maximum spatial extent of the
orbitals (21) of the order of reff 	 0.76 au, i.e. there is very small overlap between neighbouring
orbitals which, we recall, are separated by 1 au in the lattice.

The other method based on the Fourier transform of the orbitals also has its limits, which
are hidden in the formulae (17) and (20): if a certain cut-off |L| � rc for the direct lattice
summation L is assumed in the calculation of SAa,Bb(k) and ϕAa(r, k), then there will be some
limitations on the allowed degree of localization of the orbitals. The required criterion can be
worked out e.g. by analysing the Fourier transform (20) of the orbital at its maximum in the
centre of the BZ (i.e. of ϕ(r = 0, k = 0)) as follows:∑

|L|>rc

ϕ(L) �
∑

|L|<rc

ϕ(L).

Replacing the sums by the corresponding volume integrals, we obtain the following criterion:

xe−x2
+

√
π

2
erfc(x) �

√
π

4

where x = rc
√

α. The inequality above is satisfied if x � 2, i.e. α � 4/r2
c . Assuming that

rc is equal to 4–5 lattice constants, we obtain the necessary condition for the exponent of the
localized orbitals:

α � α∗
2 ∼ 0.2 (24)

for which our Fourier transform method should work. The critical value of α∗
2 obtained results

in the maximum spatial extent of the orbitals of the order of reff 	 3.4 au, which corresponds
to very diffuse orbitals spreading over more than six unit cells.
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Figure 2. The exact electron density ρ̃(r, r),
equation (19), and that based on the zero-
order approximation ρ(0) (r, r), equation (7), both
calculated along the (100) direction using α =
10 au. Note that the densities are nearly zero
between the localization centres shown by grey
circles.

A similar criterion is obtained for the overlap integrals as well. Thus, the method that we
suggest should have a much wider range of applicability than the Löwdin method as far as
the degree of localization of the non-orthogonal orbitals is concerned, since α∗

1 � α∗
2 . This

conclusion is also supported by our numerical calculations which we now describe.
Numerical calculations of the necessary powers of the ∆ matrix needed for the Löwdin

method were done in the following way. Since the density is calculated at the same point r = r′
in equations (10), (11) and (14), the regions A and B in these equations are either the same
or not far away from each other. Therefore, to calculate (∆n)Aa,Bb one can simply choose a
sufficiently big finite cluster of atoms (in fact, the cluster radius should be at least of the order
of n

2 r∗
c , where r∗

c is the decay length of the overlap integral) with regions A and B somewhere
in its centre and then calculate the complete overlap matrix for it, ∆̃. Then, by performing the
necessary n − 1 matrix multiplications, one can calculate (∆n)Aa,Bb as (∆̃n)Aa,Bb.

When using the Fourier transform method, we employed the Monkhorst–Pack (MP)
method [29] for the k point sampling and the same cut-off distance for the direct lattice
summations in equations (17) and (20) as in the previous method. In all our calculations we
used the 4 × 4 × 4 MP set which was found to be sufficient in all cases.

Results of our calculations for a large value of the exponent (α � α∗
1 � α∗

2 ) are shown
in figure 2. This case corresponds to strongly localized orbitals as is the case in ionic systems
such as MgO and NaCl. Overlap between orbitals is negligible and even the zero-order
approximation Löwdin method, equation (7), was found sufficient to give the correct density.
Density curves for the two methods are indistinguishable from each other.

The calculated densities in the intermediate case (α ∼ α∗
1 ) are shown in figure 3. This

value of α may correspond to ion–covalent and covalent systems. One can see that high
order approximations (up to n = 8) of the Löwdin method, equation (14), are needed here to
converge the density and thus the calculation is quite time-consuming.

Finally, we show in figure 4 the densities calculated using both methods for orbitals
which are least localized when α∗

1 > α > α∗
2 . The density, obtained using the Fourier

transform method, equation (19), is spread almost uniformly in the crystal volume and thus may
correspond to a metallic band. At the same time, the Löwdin expansion method, equation (14),
does not converge at all and the density is clearly diverges.
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Figure 3. The exact electron density ρ̃(r, r),
equation (19), and the several approximations to it using
equation (14) with n = 0, 1, 3 and 8, all calculated along
the (100) direction using α = 4 au. Note that the density
is small (but non-zero) between the localization centres.

Figure 4. The electron densities for α = 2 au. The other
notation is the same as in figure 3. Note that the correct
density (dots) is rather large between the localization
centres.

One can expect the latter situation to happen only for metallic systems. Interestingly, our
calculations (not reported here) for such a realistic covalent system as crystalline Si show that
the Löwdin approach also fails in some cases when the orbitals are not sufficiently localized.
Note that various degrees of localization of the orbitals can be obtained using different
localization techniques and different choices of regions; see [21] for more details.

4. Conclusions

In summary, we have considered two numerical methods which allow calculation of the electron
density of a 3D periodic system constructed via a set of non-orthogonal molecular localized
orbitals. The first, so-called Löwdin, method based on the power expansion of the inverse
of the overlap matrix has been found to be efficient only for strongly localized orbitals.
For an intermediate degree of orbital localization this method has been found to be quite
computationally demanding, since many terms in the series are to be retained. However, if
orbitals are not sufficiently localized (the exact criterion has also been suggested), the method
fails altogether and the power expansion has been shown to be divergent.

Then, we have suggested another method based on the Fourier transform of the localized
orbitals which involves calculations of inverses of only finite matrices and a k point summation
over the Brillouin zone. This method is computationally much less demanding and does
not have any convergence problems. Using a simple model for the crystal electron density
represented via a set of Gaussian s type orbitals in a simple cubic lattice (one orbital per unit
cell), we have shown that our method works equally well within a rather wide range of orbitals
having different localization, whereas the first method fails for a relatively weakly localized
orbitals. The application of the Fourier transform method to realistic systems such as MgO
and Si perfect crystals is published elsewhere [21].

The method suggested here is to be used in the cluster embedding method which is currently
being developed in our laboratory to represent a link with the environment region surrounding
the quantum cluster.
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